a different data object. Within the inner block, the variable x will refer to the data object

declared therein.

In C, the global version of a variable cannot be accessed from within the inner block. C++
resolves this problem by introducing a new operator :: called the scope resolution operator. This
can be used to uncover a hidden variable. It takes the following form:

:: variable-name

This operator allows access to the global version of a variable. For example, :count
means the global version of the variable count (and not the local variable count declared in

Tokens, Expressions and Control Structures

that block). Program 3.1 illustrates this feature.

#include <iostream>

using namespace std;

int m= 103
int main{)
{
~int m = 203

'{

int k = m;

// global m

// m redeclared,. local to main

int m = 30; // m declared again

cout <<
cout <<
cout <<

cout <<

}

// local to inner block

'we are in inner block \n";

o= ﬁ’<€ k << u\nn:
Umo= M o<< mog<"\n";
fiam o=t o<<oimo << M\n'y

cout << "\nWe are in outer block \n";

cout << m= Y << @ << "\n's
cout << "::m = " << 1:m << "\n";
return 0;

The output of Program 3.1 would be:

We are in inner block
k = 20

o 51

PROGRAM 3.1

52 & Object-Oriented Programming with C++

::m =10

We are in outer block
m = 20
com = 10

In the above program, the variable m is declared at three places, namely, outside the main()
function, inside the main(), and inside the inner block.

reode

It is to be noted ::m will always refer to the global m. In the inner block, ::m refers to the
value 10 and not 20.

A major application of the scope resolution operator is in the classes to identify the class to
which a member function belongs. This will be dealt in detail later when the classes are
introduced.

|3.15 Member Dereferencing Operators

As you know, C++ permits us to define a class containing various types of data and functions
as members. C++ also permits us to access the class members through pointers. In order to
achieve this, C++ provides a set of three pointer-to-member operators. Table 3.3 shows these
operators and their functions.

Table 3.3 Member dereferencing operators

Operator Function

R To declare a pointer to a member of a class
* To access a member using object name and a pointer to that member
To access a member using a pointer to the object and a pointer to that member

Further details on these operators will be meaningful only after we discuss classes, and
therefore we defer the use of member dereferencing operators until then.

'3.16 Memory Management Operators

C uses malloc() and ealloc() functions to allocate memory dynamically at run time. Similarly,
it uses the function free() to free dynamically allocated memory. We use dynamic allocation
techniques when it i< not known in advance how much of memory space is needed. Although
C++ supports these functions, it also defines two unary operators new and delete that perform

Tokens, Expressions and Control Structures ® 53

the task of allocating and freeing the memory in a better and easier way. Since these operators
manipulate memory on the free store, they are also known as free store operators.

An object can be created by using new, and destroyed by using delete, as and when
required. A data object created inside a block with new, will remain in existence until it is
explicitly destroyed by using delete. Thus, the lifetime of an object is directly under our
control and is unrelated to the block structure of the program.

The new operator can be used to create objects of any type. It takes the following general
form:

pointer-variable = new data-type;

Here, pointer-variable is a pointer of type data-type. The new operator allocates sufficient
memory to hold a data object of type data-type and returns the address of the object. The
data-type may be any valid data type. The pointer-variable holds the address of the memory
space allocated. Examples:

new int;
new float;

p
q

where p is a pointer of type int and q is a pointer of type float. Here, p and q must have
already been declared as pointers of appropriate types. Alternatively, we can combine the
declaration of pointers and their assignments as follows:

int *p = new int;
float *q = new float;

Subsequently, the statements

*n = 25;
*q = 7.5;

assign 25 to the newly created int object and 7.5 to the float object.

We can also initialize the memory using the new operator. This is done as follows:

pointer-variable = new data-type(value);

Here, value specifies the initial value. Examples:

int *p = new int(25);
float *q = new float(7.5);

54 o— Object-Oriented Programming with C++

As mentioned earlier, new can be used to create a memory space for any data type
including user-defined types such as arrays, structures and classes. The general form for a
one-dimensional array is:

pointer-variable = new data-type[size];

Here, size specifies the number of elements in the array. For example, the statement
int *p = new int[10];

creates a memory space for an array of 10 integers. p[0] will refer to the first element, p[1]
to the second element, and so on.

When creating multi-dimensional arrays with new, all the array sizes must be supplied.

array ptr = new int[3][5][4]; // legal
array ptr = new int[m][5][4]; // legal
array ptr = new int[3][5][1; // illegal
array ptr = new int[J[5][4]; // illegal

=

The first dimension may be a variable whose value is supplied at runtime. All others
must be constants.

The application of new to class objects will be discussed later in Chapter 6.

When a data object is no longer needed, it is destroyed to release the memory space for
reuse. The general form of its use is:

delete pointer-variable;

The pointer-variable is the pointer that points to a data object created with new. Examples:

delete p;
delete g;

If we want to free a dynamically allocated array, we must use the following form of
delete:

delete [size] pointer-variable;

The size'speciﬁes the number of elements in the array to be freed. The problem with this
form is that the programmer should remember the size of the array. Recent versions of C++
do not require the size to be specified. For example,

Tokens, Expressions and Control Structures —o 55

delete [1p;
will delete the entire array pointed to by p.
What happens if sufficient memory is not available for allocation? In such cases, like

malloc(), new returns a null pointer. Therefore, it may be a good idea to check for the
pointer produced by new before using it. It is done as follows:

.....

p = new int; SRINIVAS COLLEGE OF
ite) PG MANAGEMENT smgles
{ Acc No':'....l.“....‘l 2. & rYI1]]

\ b CALL No.:

.....

.....

The new operator offers the following advantages over the function malloc().

1. It automatically computes the size of the data object. We need not use the operator
sizeof.

2. It automatically returns the correct pointer type, so that there is no need to use a

type cast.

It is possible to initialize the object while creating the memory space.

4. Like any other operator, new and delete can be overloaded.

w

I3.17 Manipulators

Manipulators are operators that are used to format the data display. The most commonly
used manipulators are endl and setw.

The endl manipulator, when used in an output statement, causes a linefeed to be inserted.
It has the same effect as using the newline character "\n". For example, the statement

cout << "m = " << m << end}
<< "n = " << n << endl
<< "p = " << p << endl;

would cause three lines of output, one for each variable. If we assume the values of the
variables as 2597, 14, and 175 respectively, the output will appear as follows:

56 o Object-Oriented Programming with C++

v [Z[5[3[7

It is important to note that this form is not the ideal output. It should rather appear as
under:

m = 2597
o= 14
p= 175 ,

Here, the numbers are right-justified. This form of output is possible only if we can specify
a common field width for all the numbers and force them to be printed right-justified. The
setw manipulator does this job. It is used as follows:

cout << setw(5) << sum << endl;

The manipulator setw(5) specifies a field width 5 for printing the value of the variable
sum. This value is right-justified within the field as shown below:

1 [3]4]5]

Program 3.2 illustrates the use of endl and setw.

USE OF MANIPULATORS |
#include <iostream>
#include <iomanip> // for setw

using namespace std;

int main()
{
' int Basic = 950, Allowance = 95, Total = 1045;

cout << setw(10) << "Basic" << setw(10) << Basic << end]
<< setw(10) << "Allowance" << setw(10) << Allowance << end]
<< setw(10) << "Total" << setw(10) << Total << endl;

return 0;

PROGRAM 3.7

Tokens, Expressions and Control Structures - 57

Output of this program is given below:

Basic 950
Allowance 95
Total 1045
rote
@haracter strings are also printed right-justified.)

We can also write our own manipulators as follows:

#include <iostream>
ostream & symbol(ostream & output)

{

return output << "\tRs";

}

The symbol is the new manipulator which represents Rs.The identifier symbol can be
used whenever we need to display the string Rs.

|3.18 Type Cast Operator

C++ permits explicit type conversion of variables or expressions using the type cast
operator.

Traditional C casts are augmented in C++ by a function-call notation as a syntactic
alternative. The following two versions are equivalent:

(type-name) expression // C notation
type-name (expression) // C++ notation

Examples:

average = sum/(float)i; // C notation
average = sum/float(i); // C++ notation

A type-name behaves as if it is a function for converting values to a designated type. The
function-call notation usually leads to simplest expressions. However, it can be used only if
the type is an identifier. For example,

p = int * (q);

58 & Object-Oriented Programming with C++
is illegal. In such cases, we must use C type notation.
p = (int *) g3

Alternatively, we can use typedef to create an identifier of the required type and use it
in the functional notation.

typedef int * int pt;
p = int_pt(a);
ANSI C++ adds the following new cast operators:
const_cast
static_cast
dynamic_cast

#® reinterpret_cast

Application of these operators is discussed in Chapter 16.

I3.19 Expressions and Their Types

An expression is a combination of operators, constants and variables arranged as per the
rules of the language. It may also include function calls which return values. An expression
may consist of one or more operands, and zero or more operators to produce a value.
Expressions may be of the following seven types:

Constant expressions
Integral expressions
Float expressions
Pointer expressions
Relational expressions
Logical expressions
Bitwise expressions

LR B N B R

An expression may also use combinations of the above expressions. Such expressions are
known as compound expressions.

Constant Expressions
Constant Expressions consist of only constant values. Examples:
15

20 + 5 / 2.0
le

Tokens, Expressions and Control Structures 9 59

Integral Expressions

Integral Expressions are those which produce integer results after implementing all the
automatic and explicit type conversions. Examples:

m

m*n-5

m * ixl

5+ int(2.0)

where m and n are integer variables.

Float Expressions

Float Expressions are those which, after all conversions, produce floating-point results.
Examples:

X +y

x *y /10
5 + float(10)
10.75

where x and y are floating-point variables.

Pointer Expressions

Pointer Expressions produce address values. Examples:

&m

ptr

ptr + 1
leyzll

where m is a variable and ptr is a pointer.

Relational Expressions

Relational Expressions yield results of type bool which takes a value true or false. Examples:

X <=y
atb == c+d
m+n > 100

When arithmetic expressions are used on either side of a relational operator, they will be
evaluated first and then the results compared. Relational expressions are also known as
Boolean expressions.

60 & Object-Oriented Programming with C++

Logical Expressions

Logical Expressions combine two or more relational expressions and produces bool type
results. Examples:

a>b 8&& x==10
x==10 || y::5

Bitwise Expressions

Bitwise Expressions are used to manipulate data at bit level. They are basically used for
testing or shifting bits. Examples:

X << 3 // Shift three bit position to left
y > 1 // Shift one bit position to right

Shift operators are often used for multiplication and division by powers of two.

ANSI C++ has introduced what are termed as operator keywords that can be used as
alternative representation for operator symbols. Operator keywords are given in Chapter 16.

I3.20 Special Assignment Expressions

Chained Assignment

x = (y = 10);
or :
x =y = 10;

First 10 is assigned to y and then to x.

A chained statement cannot be used to initialize variables at the time of declaration. For
instance, the statement

float a = b = 12.34; // wrong
is illegal. This may be written as

float a=12.34, b=12.34 // correct

Embedded Assignment
x = (y = 50) + 10;

Tokens, Expressions and Control Structures @ 61

(y = 50) is an assignment expression known as embedded assignment. Here, the value 50 is
assigned to y and then the result 50+10 = 60 is assigned to x. This statement is

identical tu

y = 503
x =y + 10;

Compound Assignment
Like C, C++ supports a compound assignment operator which is a combination of the
assignment operator with a binary arithmetic operator. For example, the simple assignment
statement

x = x + 10;
may be written as

x += 10;

The operator += is known as compound assignment operator or short-hand assignment
operator. The general form of the compound assignment operator is:

variablel op= variable?;
where op is a binary arithmetic operator. This means that

variablel = variablel op variableZ2;

|3021 Implicit Conversions

We can mix data types in expressions. For example,
m = 5+2.75;

is a valid statement. Wherever data types are mixed in an expression, C++ performs the
conversions automatically. This process is known as implicit or automatic conversion.

When the compiler encounters an expression, it divides the expressions into sub-
expressions consisting of one operator and one or two operands. For a binary operator, if
the operands type differ, the compiler converts one of them to match with the other, using
the rule that the “smaller” type is converted to the “wider” type. For example, if one of the
operand is an int and the other is a float, the int is converted into a float because a float
is wider than an int. The “water-fall” model shown in Fig. 3.3 illustrates this rule.

64 & Object-Oriented Programming with C++

Table 3.5 Operator precedence and associativity

Operator Associativity
> left to right
—>. () [] postfix ++ postfix — — left to right
prefix ++ prefix — — ~ ! unary + unary -

unary * unary & (type) sizeof new delete right to left
—> ** left to right
¥ % left to right
+— left to right
<< >> left to right
<< =>>= left to right

=== left to right
& left to right
A left to right
| left to right
&& left to right
|| left to right
7 left to right
=*=/=%=+== right to left

=Ar=|= left to right

, (comma)

The unary operations assume higher precedence.

|3.24 Control Structures

In C++, a large number of functions are used that pass messages, and process the data
contained in objects. A function is set up to perform a task. When the task is complex, many
different algorithms can be designed to achieve the same goal. Some are simple to
comprehend, while others are not. Experience has also shown that the number of bugs that
occur is related to the format of the program. The format should be such that it is easy to
trace the flow of execution of statements. This would help not only in debugging but
also in the review and maintenance of the program later. One method of achieving the
objective of an accurate, error-resistant and maintainable code is to use one or any
combination of the following three control structures:

1. Sequence structure (straight line)
2. Selection structure (branching)
3. Loop structure (iteration or repetition)
Figure 3.4 shows how these structures are implemented using one-entry, one-exit concept,
a popular approach used in modular programming.

Tokens, Expressions and Control Structures ® 65

Entry Entry
Loo
Action 1 C ><_ P I
. . . True)
Action 2 Action 1 Action 2 Condition Action 1
Faise
Action 3
Action 2
Exit Exit
\
¢ Action 3
(a) Sequence (b) Selection (c) Loop

Fig. 3.4 ¢ Basic control structures I

It is important to understand that all program processing can be coded by using only
these three logic structures. The approach of using one or more of these basic control
constructs in programming is known as structured programming, an important technique
in software engineering.

Using these three basic constructs, we may represent a function structure either in
detail or in summary form as shown in Figs 3.5 (a), (b) and (c).

Like C, C++ also supports all the three basic control structures, and implements them
using various control statements as shown in Fig. 3.6. This shows that C++ combines the
power of structured programming with the object-oriented paradigm.

The if statement

The if statement is implemented in two forms:

Simple if statement
if...else statement

68 ®- Object-Oriented Programming with C++

switch(expression)

{

casel:

{

actionl;

}

case2:

{

action?;

}

case3:

{

action3;

}
default:

{

actiond;
}
}

actionh;

The do-while statement

The do-while is an exit-controlled loop. Based on a condition,the control is transferred back
to a particular point in the program. The syntax is as follows:

do
{

actionl;

}
while{condition is true);
actionZ;

The while statement

This is also a loop structure, but is an entry-controlled one. The syntax is as follows:

while(condition is true)

{

actionl;

J

action2;

The for statement

The for is an entry-entrolled loop and is used when an action is to be repeated for a
predetermined number of times. The syntax is as follows:

Tokens, Expressions and Control Structures -0 69

for(initial value; test; increment)

{

actionl;

}

action2;

The syntax of the control statements in C++ is very much similar to that of C and therefore
they are implemented as and when they are required.

/

g8 ¢

g ¢

¥

/

C++ provides various types of tokens that include keywords, identifiers, constants,
strings, and operators.

SUMMARY

Identifiers refer to the names of variables, functions, arrays, classes, etc.
C++ provides an additional use of void, for declaration of generic pointers.

The enumerated data types differ slightly in C++. The tag names of the enumerated
data types become new type names. That is, we can declare new variables using these
tag names.

In C++, the size of character array should be one larger than the number of characters
in the string.

C++ adds the concept of constant pointer and pointer to constant. In case of constant
pointer we can not modify the address that the pointer is initialized to. In case of
pointer to a constant, contents of what it points to cannot be changed.

Pointers are widely used in C++ for memory management and to achieve polymorphism.

C++ provides a qualifier called const to declare named constants which are just like
variables except that their values can not be changed. A const modifier defaults to an
int.

C++ is very strict regarding type checking of variables. It does not allow to equate
variables of two different data types. The only way to break this rule is type casting.

C++ allows us to declare a variable anywhere in the program, as also its initialization
at run time, using the expressions at the place of declaration.

A reference variable provides an alternative name for a previously defined variable.
Both the variables refer to the same data object in the memory. Hence, change in the
value of one will also be reflected in the value of the other variable.

A reference variable must be initialized at the time of declaration, which establishes
the correspondence between the reference and the data object that it names.

A e

72 ® Object-Oriented Programming with C++

3.2 An unsigned int can be twice as large as the signed int. Explain how?
3.3 Why does C++ have t pc modifiers?
3.4 What are the applications of void data type in C++?

3.5 Can we assign a void pointer to an int type pointer? If not, why? How can we
achieve this?

3.6 Describe, with examples, the uses of enumeration data types.

3.7 Describe the differences in the implementation of enum data type in ANSI C and
C++.

3.8 Why is an array called a derived data type?

3.9 The size of a char array that is declared to store a string should be one larger
than the number of characters in the string. Why?

3.10 The const was taken from C++ and incorporated in ANSI C, although quite
differently. Explain.

3.11 How does a constant defined by const differ from the constant defined by the
preprocessor statement #define?

3.12 In C++, avariable can be declared anywhere in the scope. What is the significance
of this feature?

3.13 What do you mean by dynamic initialization of a variable? Give an example.
3.14 What is a reference variable? What is its major use?

3.15 List at least four new operators added by C++ which aid OOP.

3.16 What is the application of the scope resolution operator :: in C++?

3.17 What are the advantages of using new operator as compared to the function
malloc()?

3.18 Illustrate with an example, how the setw manipulator works.
3.19 How do the following statements differ?

(a) char * const p;

(b) char const *p;

I Debugging Exercises

3.1 What will happen when you execute the following code?
#include <iostream.h>
void main()
{
int i=0;
i=400%400/400;
cout << i3
}
3.2 Identify the error in the following program.

#include <iostream.h>
void main()

int num[]={1,2,3,4,5,6};
num{1]==[1]num ?

}

Tokens, Expressions and Control Structures

cout<<"Success"

3.3 Identify the errors in the following program.

#include <iostream.h>
void main()
{
int i=5;
while(i)
{
switch(1)
{
default:
case 4:
case 5:

break;

case 1:
continue;

case 2:

case 3:
break;

}

3.4 Identify the error in the following program.

#include <ijostream.h>
#define pi 3.14

int squareArea(int &);
int circleArea(int &);

void main()

{
int a=10;
cout << squareArea(a) <<

cout<<"Error";

o 73

76 ©- Object-Oriented Programming with C++

Write a program to read the figures set out in the above form, to calculate the
batting averages and to print out the complete table including the averages.

3.7 Write programs to evaluate the following functions to 0.0001% accuracy.

. 3 x5 X7
(a) sinX=X——+——"rf .-
31 5 7!
(b) SUM =1+ (1/2%+(1/3)° + (1/4)* + - ..
2 4 6
(© cosx=1-> +> % . .
21 4! ¢!
3.8 Write a program to print a table of values of the function

-X
y=e
for x varying from 0 to 10 in steps of 0.1. The table should appear as follows.
TABLE FOR Y = EXP [-X|

X 01 02 03 04 05 06 07 08 09

0.0
1.0

T BN S A R S R TR £ s

3.9 Write a program to calculate the variance and standard deviation of N numbers.

N
1 ,
Variance = - (x, —%)?

1 .
St' d d D 1ati = — (x. — ~)-2
anaar eviation \fN E X; — X

)
where x = — » x,
N i=1
3.10 An electricity board charges the following rates to domestic users to discourage
large consumption of energy:

For the first 100 units - 60P per unit
For next 200 units - 80P per unit
Beyond 300 units - 90P per unit

All users are charged a minimum of Rs. 50.00. If the total amount is more than
Rs. 300.00 then an additional surcharge of 15% is added.

Write a program to read the names of users and number of units consumed and
print out the charges with names.

Key Concepts

|4.1 Introduction

We know that functions play an important

» Return types in main() role in C program development. Dividing a
» Function prototyping program into functions is one of the major
> Call by reference principles of top-down, structured
- programming. Another advantage of using

» Call by value functions is that it is possible to reduce the
» Return by reference size of a program by calling and using them
» Inline functions at different places in the program.
> Default arguments Recall that we have used a syntax similar
» Constant arguments to the following in developing C programs.
» Function overloading

void show(); /* Function declaration */

main()

show(); /* Function call */

void show() /* Function definition */

.....

78 ® Object-Oriented Programming with C++

/

..... /* Function body */

When the function is called, control is transferred to the first statement in the function
body. The other statements in the function body are then executed and control returns to
the main program when the closing brace is encountered. C++ is no exception. Functions
continue to be the building blocks of C++ programs. In fact, C++ has added many new
features to functions to make them more reliable and flexible. Like C++ operators, a C++
function can be overloaded to make it perform different tasks depending on the arguments
passed to it. Most of these modifications are aimed at meeting the requirements of object-
oriented facilities.

In this chapter, we shall briefly discuss the various new features that are added to C++
functions and their implementation.

14.2 The Main Function

C does not specify any return type for the main() function which is the starting point for
the execution of a program. The definition of main() would look like this:

main()

{
}

// main progrom stotements

This is perfectly valid because the main() in C does not return any value.

In C++, the main() returns a value of type int to the operating system. C++, therefore,
explicitly defines main() as matching one of the following prototypes:

int main();
int main(int argc, char * argv[]);

The functions that have a return value should use the return statement for termination.
The main() function in C++ is, therefore, defined as follows:

int main()

......

‘ return 0;
!

Since the return type of functions is int by default, the keyword int in the main() header
is optional. Most C++ compilers will generate an error or warning if there is no return

Functions in C++ ® 79
statement. Turbo C++ issues the warning

Function should return a value

and then proceeds to compile the program. It is good programming practice to actually
return a value from main().

Many operating systems test the return value (called exit value) to determine if there is
any problem. The normal convention is that an exit value of zero means the program ran
successfully, while a nonzero value means there was a problem. The explicit use of a
return(0) statement will indicate that the program was successfully executed.

|4.3 Function Prototyping

Function prototyping is one of the major improvements added to C++ functions. The prototype
describes the function interface to the compiler by giving details such as the number and
type of arguments and the type of return values. With function prototyping, a template is
always used when declaring and defining a function. When a function is called, the compiler
uses the template to ensure that proper arguments are passed, and the return value is
treated correctly. Any violation in matching the arguments or the return types will be caught
by the compiler at the time of compilation itself. These checks and controls did not exist in
the conventional C functions.

Remember, C also uses prototyping. But it was introduced first in C++ by Stroustrup and
the success of this feature inspired the ANSI C committee to adopt it. However, there is a
major difference in prototyping between C and C++. While C++ makes the prototyping
essential, ANSI C makes it optional, perhaps, to preserve the compatibility with classic C.

Function prototype is a declaration statement in the calling program and is of the following form:

type function-name (argument-list);

The argument-list contains the types and names of arguments that must be passed to the
function.

Example:
float volume(int x, float y, float z);

Note that each argument variable must be declared independently inside the parentheses.
That is, a combined declaration like

float volume(int x, float y, z);

is illegal.

80 & Object-Oriented Programming with C++

In a function declaration, the names of the arguments are dummy variables and therefore,
they are optional. That is, the form

float volume(int, float, float);

is acceptable at the place of declaration. At this stage, the compiler only checks for the type
of arguments when the function is called.

In general, we can either include or exclude the variable names in the argument list
of prototypes. The variable names in the prototype just act as placeholders and, therefore,
if names are used, they don't have to match the names used in the function call or function
definition. ’

In the function definition, names are required because the arguments must be referenced
inside the function. Example:

float volume(int a,float b,float c)

float v = a*b*c;

The function volume() can be invoked in a program as follows:
float cubel = volume(bl,wl,hl); // Function call

The variable bl, wl, and hl are known as the actual parameters which specify the
dimensions of cubel. Their types (which have been declared earlier) should match with the
types declared in the prototype. Remember, the calling statement should not include type
names in the argument list.

We can also declare a function with an empty argument list, as in the following example:
void display();

In C++, this means that the function does not pass any parameters. It is identical to the
statement

void display(void);

However, in C, an empty parentheses implies any number of arguments. That is, we
have foregone prototyping. A C++ function can also have an 'open' parameter list by the use
of ellipses in the prototype as shown below:

void do_something(...);

Functions in C++ o 81

|4.4 Call by Reference

In traditional C, a function call passes arguments by value. The called function creates a
new set of variables and copies the values of arguments into them. The function does not
have access to the actual variables in the calling program and can only work on the copies of
values. This mechanism is fine if the function does not need to alter the values of the original
variables in the calling program. But, there may arise situations where we would like to
change the values of variables in the calling program. For example, in bubble sort, we
compare two adjacent elements in the list and interchange their values if the first element
is greater than the second. If a function is used for bubble sort, then it should be able to alter
the values of variables in the calling function, which is not possible if the call-by-value
method is used.

Provision of the reference variables in C++ permits us to pass parameters to the functions
by reference. When we pass arguments by reference, the ‘formal’ arguments in the called
function become aliases to the ‘actual’ arguments in the calling function. This means that
when the function is working with its own arguments, it is actually working on the original
data. Consider the following function:

void swap(int &a,int &b) // a and b are reference variables
{

int t = a; // Dynamic initialization

a =b;

b =1t;

}
Now, if m and n are two integer variables, then the function call
swap(m, n);
will exchange the values of m and n using their aliases (reference variables) a and b.
Reference variables have been discussed in detail in Chapter 3. In traditional C, this is

accomplished using pointers and indirection as follows:

void swapl(int *a, int *b) /* Function definition */

{

int t;

t = *a; /* assign the value at address a to t */
*a = *b; /* put the value at b into a */

bh = t; / put the value at t into b */

}

This function can be called as follows:

82 & Object-Oriented Programming with C++

swapl(&x, &y); /* call by passing */
/* addresses of variables */

This approach is also acceptable in C++. Note that the call-by-reference method is neaterin
its approach.

I4.S Return by Reference

A function can also return a reference. Consider the following function:
int & max(int &x,int &y)
{

if (x > y)
return Xx;
else
return y;

}

Since the return type of max() is int &, the function returns reference to x or ¥ tand not
the values). Then a function call such as max(a, b) will yield a reference 1o either a or b
depending on their values. This means that this function call can appear on the left-hand
side of an assignment statement. That is, the statement

max(a,b) = -1;

is legal and assigns -1 to a if it is larger, otherwise -1 to b.

|4.6 Inline Functions

One of the objectives of using functions in a program is to save some memory space, wiich
becomes appreciable when a function is likely to be called many times. However, every time
a function is called, it takes a lot of extra time in executing a series of instructions for tasks
such as jumping to the function, saving registers, pushing arguments into the stack, and
returning to the calling function. When a function is small, a substantial percentage of
execution time may be spent in such overheads.

One solution to this problem is to use macro definitions, popularly known as ricoros.
Preprocessor macros are popular in C. The major drawback with macros is that they are not
really functions and therefore, the usual error checking does not occur during compilation.

C++ has a different solution to this problem. To eliminate the cost of calls to small functions,
C++ proposes a new feature called inline function. An inline function is a function that is
expanded in line when it is invoked. That is, the compiler replaces the function call with the

Functions in C++ @ 83

corresponding function code (something similar to macros expansion). The inline functions
are defined as follows:

inline function-header
i

function body

Bxample:

inline double cube(double a)

{
}

return(a*a*a);

The above inline function can be invoked by statements like

¢ = cube(3.

3.0);
d = cube(2.5+

1.5);

On the execution of these statements, the values of ¢ and d will be 27 and 64 respectively.
If the arguments are expressions such as 2.5 + 1.5, the function passes the value of the
oxpression, 4 in this case. This makes the inline feature far superior to macros.

It is easy to make a function inline. All we need to do is to prefix the keyword inline to
the funetion definition. All inline functions must be defined before they are called.

We should exercise care before making a function inline. The speed benefits of inline
tunctions diminish as the function grows in size. At some point the overhead of the function
call becomes small compared to the execution of the function, and the benefits of inline
functions may be lost. In such cases, the use of normal functions will be more meaningful.
Usually, the functions are made inline when they are small enough to be defined in one or
two lines. Example:

inline double cube(double a) {return(a*a*a);}
Remember that the inline keyword merely sends a request, not a command, to the compiler.
The compiler may ignore this request if the function definition is too long or too complicated

andd compile the funetion as a normal function.

Some of the situations where inline expansion may not work are:

-

For functions returning values, if a loop, a switch, or a goto exists.
For functions not returning values, if a return statement exists.

If functions contain static variables.

1f inline functions are recursive.

1

84 & Object-Oriented Programming with C++

reote

Inline expansion makes a program run faster because the overhead of a function call and
return is eliminated. However, it makes the program to take up more memory because
the statements that define the inline function are reproduced at each point where the
function is called. So, a trade-off becomes necessary.

Program 4.1 illustrates the use of inline functions.

#include <iostream>
using namespace std;

inline float mul(float x, float y)
{

}

return{x*y);

inline double div(double p, double q)
{

return(p/q);
}
int main()
{
float a = 12.345;
float b = 9.82;

cout << mul(a,b) << "\n";
cout << div(a,b) << "\n";

return 0;

PROGRAM 4.1

The output of program 4.1 would be

121.228
1.25713

|4.7 Default Arguments

C++ allows us to call a function without specifying all its arguments. In such cases, the
function assigns a default value to the parameter which does not have a matching argument

Functions in C++ —o 85

in the function call. Default values are specified when the function is declared. The compiler
looks at the prototype to see how many arguments a function uses and alerts the program
for possible default values. Here is an example of a prototype (i.e. function declaration) with
default values:

float amount(float principal,int period,float rate=0.15);
The default value is specified in a manner syntactically similar to a variable initialization.
The above prototype declares a default value of 0.15 to the argument rate. A subsequent
function call like

value = amount(5000,7); // one argument missing

passes the value of 5000 to principal and 7 to period and then lets the function use default
value of 0.15 for rate. The call

value = amount(5000,5,0.12); // no missing argument
passes an explicit value of 0.12 to rate.

A default argument is checked for type at the time of declaration and evaluated at the
time of call. One important point to note is that only the trailing arguments can have default
values and therefore we must add defaults from right to left. We cannot provide a default
value to a particular argument in the middle of an argument list. Some examples of function
declaration with default values are:

int mul(int i, int j=5, int k=10); // legal
int mul(int i=5, int j); // illegal
int mul(int i=0, int j, int k=10); // illegal

int mul(int i=2, int j=5, int k=10); // legal

Default arguments are useful in situations where some arguments always have the same
value. For instance, bank interest may remain the same for all customers for a particular
period of deposit. It also provides a greater flexibility to the programmers. A function can be
written with more parameters than are required for its most common application. Using
default arguments, a programmer can use only those arguments that are meaningful to a
particular situation. Program 4.2 illustrates the use of default arguments.

© DEFAULT ARGUMENTS
#include <jostream>

using namespace std;

(Contd)

86 @ Object-Oriented Programming with C++

int main()
{

float amount;

float value(float p, int n, float r=0.15); // prototype
void printline(char ch='*', int len=40); // prototype

printline(); // uses default values for arguments

amount = value(5000.00,5);

// default for 3rd argument

cout << "\n Final Value = " << amount << "\n\n";
printline('="); // use default value for 2nd argument
return 0;

}

/* __ */

float value(float p, int n, float r)
{

int year = 1;
float sum = p;

while(year <= n)

sum = sum*(1+r);
year = year+l;
}

return(sum);

}

void printline(char ch, int len)

{
for(int i=1; i<=len; i++) printf("%c",ch);
printf("\n");

The output of Program 4.2 would be

FhkkkkhkhkkhkkhkhhAAA kR * kA Ak hhhkkkhkkhkkkkx

Final Value = 10056.8

Advantages of providing the default arguments are:

PROGRAM 4.2

Functions in C++ —— o 87

1. We can use default arguments to add new parameters to the existing functions.
9. Default arguments can be used to combine similar functions into one.

l4.8 const Arguments

In C++. an argument to a function can be declared as const as shown below.

int strien{const char *p);
int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.

The compiler will generate an error when this condition is violated. This type of declaration
is significant only when we pass arguments by reference or pointers.

l4.9 Function Overloading

As stated earlier, overloading refers to the use of the same thing for different purposes. C++
also permits overloading of functions. This means that we can use the same function name
to ereate functions that perform a variety of different tasks. This is known as function
polvmorphism in OOP.

- Using the concept of function overloading; we can design a family of functions with one
function name but with different argument lists. The function would perform different
operations depending on the argument list in the function call. The correct function to be
invoked is determined by checking the number and type of the arguments but not on the
function tvpe. For example, an overloaded add() function handles different types of data as
shown below:

// Declarations

int add(int a, int b); // prototype 1
int add{int a, int b, int ¢); // prototype 2
double add(double x, double y}; // prototype 3
double add(int p, double q); // prototype 4
double add(double p, int q); // prototype 5

// Function calls

cout << add(5, 10); // uses prototype 1
cout << add(15, 10.0); /] uses prototype 4
cout << add(12.5, 7.5); // uses prototype 3
cout << add(5, 10, 15); // uses prototype 2
cout << add(0.75, 5); // uses prototype 5

88 o Object-Oriented Programming with C++

A function call first matches the prototype having the same number and type of arguments
and then calls the appropriate function for execution. A best match must be unique. The
function selection involves the following steps:

1. The compiler first tries to find an exact match in which the types of actual argu-
ments are the same, and use that function.

2. If an exact match is not found, the compiler uses the integral promotions to the
actual arguments, such as,

char to int
float to double

to find a match.

3. When either of them fails, the compiler tries to use the built-in conversions (the
implicit assignment conversions) to the actual arguments and then uses the func-
tion whose match is unique. If the conversion is possible to have multiple matches,
then the compiler will generate an error message. Suppose we use the following
two functions:

Tong square(long n)
double square(double x)

A function call such as

square(10)

will cause an error because int argument can be converted to either long or double,
thereby creating an ambiguous situation as to which version of square() should be
used.

4. 1If all of the steps fail, then the compiler will try the user-defined conversions in
combination with integral promotions and built-in conversions to find a unique
match. User-defined conversions are often used in handling class objects.

Program 4.3 illustrates function overloading.

FUNCTION OVERLOADING

// Function volume() is overloaded three times
#include <iostream>

using namespace std;

// Declarations (prototypes)

int volume(int);

double volume(double, int);

long volume(long, int, intf;

(Contd)

Functions in C++

int main()
cout << volume(l0} << "\n";
cout << volume{7.%,8) << "\n";
cout << vo]ume(lOUt 75,15) << "\n

re'urn 0;

}
// Functir. dJdefinitions
int volume(int <) // cube

return{s*s*s);

?oub1e volume(double r, int h) // cylinder

return(3.14519*r*r*h);
}

ﬁong volume(long 1, int b, int h) // rectangular box

return(1*b*h);

The output of Program 4.3 would be:

1000
157.26
112500

® 89

PROGRAM 4.3

Overloading of the functions should be done with caution. We should not overload unrelated
functions and should reserve function overloading for functions that perform closely related
tasks. Sometimes, the default arguments may be used instead of overloading. This may

reduce the number of functions to be defined.

Overloaded functions are extensively used for handling class objects. They will be

illustrated later when the classes are discussed in the next chapter.

lilO Friend and Virtual Functions

C++ introduces two new types of functions, namely, friend function and virtual function.
They are basically introduced to handle some specific tasks related to class objects. Therefore,
discussions on these functions have been reserved until after the class objects are discussed.
The friend functions are discussed in Sec. 5.15 of the next chapter and virtual functions in

Sec. 9.5 of Chapter 9.

90 e Object-Oriented Programming with C++

|4.11 Math Library Functions

The standard C++ supports many math functions that can be used for performing certain
commonly used calculations. Most frequently used math library functions are summarized
in Table 4.1.

Table 4.1 Commonly used math library functions

Function Purposes

ceil(x) Rounds x to the smallest integer not less than x ceil(8.1)
= 9.0 and ceil(-8.8) = -8.0

cos(x) Trigonometric cosine of x (x in radians)

exp(x) Exponential function e*.

fabs(x) Absolute value of x.

If x>0 then abs(x) is x
If x=0 then abs(x) is 0.0
If x<0 then abs(x) is —x

floor(x) Rounds x to the largest integer not greater than x
floor(8.2) = 8.0 and floor(-8.8 = -9.0

log(x) Natural logarithm of x(base e)

log10(x) Logarithm of x(base 10)

pow(x,y) X raised to power y(x*)

sintx} Trigonometric sine of x (x in radians)

Sqriex} ' Square root of x

tariix) Trigonometric tangent of x (x in radians)

RO SR S T

e 7node

The argument variables x and y are of type double and all the functions return the data
\tvpe double.

\~

To use the math library functions, we must include the header file math.h in conventiona!
C++ and emath in ANSI C++. '

~—._ SUMMARY

U, R SRR AT
g,

& It is possible to reduce the size of program by calling and using functions at different
places in the program.

¢ In C++ the main() returns a value of type int to the operating system. Since the return
type of functions is int by default, the keyword int in the main() header is optional.
Most C++ compilers issue a warning, if there is no return statement.

;0

pN

Functions in C++ -0 91

Function prototyping gives the compiler the details about the functions such as the
number and types of arguments and the type of return values.

Reference variables in C++ permit us to pass parameters to the functions by reference.
A function can also return a reference to a variable.) ‘
When a function is declared inline the compiler replaces the function call with the
respective function code. Normally, a small size function is made as inline. '
The compiler may ignore the inline declaration if the function declaration is too long or
too complicated and hence compile the function as a normal function.

C++ allows us to assign default values to the function parameters when the function is
declared. In such a case we can call a function without specifying all its arguments.
The defaults are always added from right to left.

In C++, an argument to a function can be declared as const, indicating that the function
should not modify the argument.

C++ allows function overloading. That is, we can have more than one function with the

same name in our program. The compiler matches the function call with the exact
function code by checking the number and type of the arguments.

C++ supports two new types of functions, namely friend functions and virtual functions.

Many mathematical computations can be carried out using the library functions
supported by the C++ standard library.

Key Terms

actual arguments
argument list
bubble sort

call by reference
cail by value
called function
calling program
calling statement
cmath

const arguments
declaration statement
default arguments

YVYVYVYVYVYYYYVYVYY

default values

YVVYVYVYVYVYYVYVYVYYYY

dummy variables
ellipses

empty argument list
exit value

formal arguments
friend functions
function call
function definition
function overloading
function polymorphism
function prototype
indirection

inline

(Contd)

w0
N
®

Object-Oriented Programming with C++

» inline functions » prototyping

» macros » reference variable
» main() » return by reference
» math library » return statement
> math.h » return type

» overloading » return()

» pointers » template

» polymorphism » virtual functions

i Review Questions

4.1 State whether the followirg statements are TRUE or FALSE.

(a)

(b)

(c)

(d)
(e)

®

A function argument is a value returned by the function to the calling
program.

When arguments are passed by value, the function works with the original
arguments in the calling program.

When a function returns a value, the entire function call can be assigned to
a variable.

A function can return a value by reference.

When an argument is passed by reference, a temporary variable is created
in the calling program to hold the argument value.

It is not necessary to specify the variable name in the function prototype.

4.2 What are the advantages of function prototypes in C++?

4.3 Describe the different styles of writing prototypes.

4.4 Find errors, if any, in the following function prototypes.

(a)
(b)
(c)
(d)
(e)

float average(x,y);

int mul(int a,b);

int displayl(...);

void Vect(int? &V, int & size);
void print(float data [], size = 20);

4.5 What is the main advantage of passing arguments by reference?

4.6 When will you make a function inline? Why?

4.7 How does an inline function differ from a preprocessor macro?
4.8 When do we need to use default arguments in a function?
4.9 What is the significance of an empty parenthesis in a function declaration?

4.10 What do you meant by overloading of a function? When do we use this concept?

Functions in C++ o 93

4.11 Comment on the following function definitions:
(a) int *f()
{

intm=1;

return(&m);
}
(b) double f()
{

return(l);
}
(¢) int & ()

{
int n = 10;
return(n);
}
rDebugging Exercises

4.1 Identify the error in the following program.
#include <iostream.h>

int fun()
{

return 1;
}

float fun()
{
return 10.23;
void main()
{
cout << (int)fun() << ' ';
cout << (float)fun() << ' ';

94 e

Object-Oriented Programming with C++

4.2 Identify the error in the following program.

#include <iostream.h>

void display(const int constl=5)
{
const int const2=5;
int arrayl[constl];
int array2[const2];
for(int 1=0; i<5; i++)
{
arrayl[i] = i;
array2[i] = 1*10;
cout << arrayl[i] << ' ' << array2[i] << ' '

midm@no
{

display(5);
}

4.3 Identify the error in the following program.

4.4

#include <iostream.h>
int gValue=10;
void extra()

{
}

void main()

{

cout << gValue << ' '

extra();

{
int gValue = 20;
cout << gValue << ' ';
cout << : gVQ]ue << 'y

J

Find errors, if any, in the following function definition for displayving a matrix:
void display(int A[] [], int m, int n)

{

for(i=0; i<m; i++)

Functions in C++ ® 95

for(j=0; j<n; Jj++)
cout << " " << A[i][§];
cout << "\n";

I Programming Exercises

4.1
1.2

4.3

4.4

4.5

1.6
4.7

4.8

Write a function to read a matrix of size m x n from the kevboard.

Write a program to read a matrix of size m x n from the kevbhoard and display
the same on the screen using functions.

Rewrite the program of Exercise 4.2 to make the row parameter of the maltrix as a
default argument.

The effect of a default argument can be alternatively achieved by overloading.
Discuss with an example.

Write @« macro that obtains the largest of three numbers.

Redo Exercise 4.5 using inline function. Test the function using a main program.
Write a function power() to raise a number m to a power n. The function takes a
double value for m and int value for n, and returns the result correctly. Use a
default value of 2 for n to make the function to calculate squares when this argument
is omitted. Write a main that gets the values of m and n from the user to test the
function.

Write a function that performs the same operation as that of Exercise 4.7 but
takes an int value for m. Both the functions should have the same name. Write a
main that calls both the functions. Use the concept of function overloading.

Key Concepts

>
>
>
>
>
>
>
>
>
>

Using structures

Creating a class

Defining member functions
Creating objects

Using objects

Inline member functions
Nested member functions
Private member functions
Arrays as class members

VYVYVYVYVYYVYVYYVYY

Storage of objects

IS.I Introduction

Static data members

Static member functions

Using arrays of objects

Passing objects as parameters
Making functions friendly to classes
Functions returning objects

const member functions

Pointers to members

Using dereferencing operators

Local classes

The most important feature of C++ is the “class”. Its significance is highlighted by the fact
that Stroustrup initially gave the name “C with classes” to his new language. A class is an

Classes and Objects 9 97

extension of the idea of structure used in C. It is a new way of creating and implementing a
user-defined data type. We shall discuss, in this chapter, the concept of class by first reviewing
the traditional structures found in C and then the ways in which classes can be designed,
implemented and applied.

|5.2 C Structures Revisited

We know that one of the unique features of the C language is structures. They provide a
method for packing together data of different types. A structure is a convenient tool for
handling a group of logically related data items. It is a user-defined data type with a template
that serves to define its data properties. Once the structure type has been defined, we can
create variables of that type using declarations that are similar to the built-in type
declarations. For example, consider the following declaration:

struct student

{
char name[20];
int roll_number;
float total marks;

b

The keyword struct declares student as a new data type that can hold three fields of
different data types. These fields are known as structure members or elements. The identifier
student, which is referred to as structure name or structure tag, can be used to create variables
of type student. Example:

struct student A; // C declaration

Ais avariable of type student and has three member variables as defined by the template.
Member variables can be accessed using the dot or period operator as follows:

strcpy(A.name, "John");

A.roll number = 999;

A.total marks = 595.5;

Final total = A.total marks + 5;

Structures can have arrays, pointers or structures as members.

Limitations of C Structure

The standard C does not allow the struct data type to be treated like built-in types. For
example, consider the following structure:

98 @ Object-Onented Programmirig with C++

struct complex
{
float x;
float y;
bs

struct complex cl, c2, c3;

The complex numbers c1, ¢2, and ¢3 can easily be assigned values using the dot operator.
but we cannot add two complex numbers or subtract one from the other. For example,

c3 = cl + ¢c2;
is illegal in C.

Another important limitation of C structures is that they do not permit data fuding.
Structure members can be directly accessed by the structure variables by any ftunction
anywhere in their scope. In other words. the structure members are public members.

Extensions to Structures

C++ supports all the features of structures as defined in . But C++ has expanded its
capabilities further to suit its OOP philosophy. It attempts to bring the user-defined types
as close as possible to the built-in data types, and also provides a facility to hide the data
which is one of the main principles of OOP. Inheritance, a mechanism by which one tvpe
can inherit characteristics from other types, is also supported by C++.

In C++, a structure can have both variables and functions as members. It can also declare
some of its members as 'private’ so that they cannot be accessed directly by the external
functions.

In C++, the structure names are stand-alone and can be used like any other type names.
In other words, the keyword struct can be omitted in the declaration of structure variables.
For example, we can declare the student variable A as

student A; // C++ declaration
Remember, this is an error in C.

C++ incorporates all these extensions in another user-defined type known as class. There
is very little syntactical difference between structures and classes in ('++ and, therefore.
thev can be used interchangeably with minor modifications. Since class is a specially
introduced data type in C++, most of the C++ programmers tend to use the structures for
holding only data, and classes to hold both the data and functions. Therefore, we will not
discuss structures any further.

nole

The only difference between a structure and a class in C++ is that, by default. the meml)m‘n
of a class are private, while, by default, the members of a structure are public. j

Classes and Objects 9 99

15.3 Specifying a Class

A cluss iz a way to bind the data and its associated functions together. It allows the data
tand functionsi to be hidden. if necessary, from external use. When defining a class, we are
creating a new wbstract data tvpe that can be treated like any other built-in data type.
Generally, a class specification has two parts:

1. Class declaration
2 (Mass function definitions

The class declaration describes the type and scope of its members. The class function
definitions describe how the class functions are implemented.

The general torm of a class declaration is:

class class name
i
private:
variable declarations;
function declarations;
public:
variable declarations;
function declaration;

Ti. elass doelaration i= <imiar to a struet declaration. The keyword class specifies.
that what foliows 18 an absiract data of type class_name. The body of a class is enclosed
within braces and terminated by a semicolon. The class body contains the declaration of
Laranies and functions. These functions and variables are collectively called class members.
Thev are teually grouped under two sections, namely, private and public to denote which of
the members are nreeate and which of them are public. The keywords private and public
are known as visibility labels. Note that these keywords are followed by a colon.

The class members that have been declared as private can be accessed only from within
the class. On the other hand, public members can be accessed from outside the class also.
The data hiding (using private declaration) is the key feature of object-oriented programming.
The use of the kevword private is optional. By default, the members of a class are private.
I both the lubels are missing. then, by default, all the members are private. Such a class is
completely hidden from the outside world and does not serve any purpose.

The variables declared inside the class are known as data members and the functions are
known as member functions. Only the member functions can have acgess to the private data
members and private functions. However, the public members (both functions and data)
can be accessed from outside the class. This is illustrated in Fig. 5.1. The binding of data and
functions tugether into a single class-type variable is referred to as encapsulation.

100e Object-Oriented Programming with C++

CLASS

No entry to ... Frivate area ___

private area

Entry allowed to — |
ry : >~ Data I« |
I

public area

Fig.5.1 & Data hiding in classes i

- o

A Simple Class Example

A typical class declaration would look like:

class item
{
int number; // variables declaration
float cost; // private by default
public:
void getdata(int a, float b); // functions declaration
void putdata(void); // using prototype

}:// ends with semicolon

We usually give a class some meaningful name, such as item. This name now becomes a
new type identifier that can be used to declare instances of that class type. The class item
contains two data members and two function members. The data members are private by
default while both the functions are public by declaration. The function getdata() can be
used to assign values to the member variables number and cost, and putdata() for displaying
their values. These functions provide the only access to the data members from outside the
class. This means that the data cannot be accessed by any function that is not a member of
the class item. Note that the functions are declared, not defined. Actual function definitions
will appear later in the program. The data members are usually declared as private and
the member functions as public. Figure 5.2 shows two different notations used by the OOP
analysts to represent a class.

Creating Objects

Remember that the declaration of item as shown above does not define any objects of item
but only specifies what they will contain. Once a class has been declared, we can create
variables of that type by using the class name (like any other built-in type variable). For
example,

